Attribution/License

e Original Materials developed by Mike Shah, Ph.D. (www.mshah.io)

e This slideset and associated source code may not be distributed
without prior written notice

http://www.mshah.io

18:00 - 18:30 UTC Sat, March 16, 2024

~30 minutes | Introductory Audience

The Case for Graphics

with Mike Shah

Social: @MichaelShah

Web: mshah.io

Courses: courses.mshah.io
3 YouTube
www.voutube.com/c/MikeShah
http://tinyurl.com/mike-talks

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah
http://tinyurl.com/mike-talks

What you're going to learn today (1/4)

r

DConf Online 2024 5 @ &

e Demo3o0of3

o Using Render targets
o (Same as demo # 2)

e Demo2of3 DConf Online 2024 5 6 &

o The ‘Stanford bunny’
o We'll talk about working with data
inD

e Demo1of3 demo 01 - DConf Online 2024 - o x

e The classic triangle
o This is where we will begin!

My Goal Today:

Is to introduce you to Dlang, and get you excited about
using it for graphics (games/simulation/etc.) application
programming

The abstract that you read and enticed

Abstract you to join me is here!

Abstract: ‘write fast, read fast, and run fast’ is the mantra found on the D
programming language homepage (https://dlang.org/). Notice a word game
and graphics programmers like is used 3 times —fast! In this talk | will show
how the D programming language can be used for Graphics programming
using OpenGL (And I'll mention Vulkan too!). I'll show a small graphics demo
and highlight how the D programming language was used to make it easier to
architect a graphics scene. Attendees of this talk will leave understanding how
to setup a basic graphics application, and a few tips on why Dlang could be
their secret weapon for rapidly building high performance graphics
applications.

https://dlang.org/

Your Tour Guide for Today

by Mike Shah

Associate Teaching Professor at Northeastern University

in Boston, Massachusetts.

o | love teaching: courses in computer systems, computer graphics,
geometry, and game engine development.

o My research is divided into computer graphics (geometry) and
software engineering (software analysis and visualization tools).

| do consulting and technical training on modern C++,
DLang, Concurrency, OpenGL, and Vulkan projects

o Usually graphics or games related -- e.g. Building 3D application
plugins

Outside of work: guitar, running/weights, traveling and
cooking are fun to talk about

Web
www.mshah.io

@ YouTube

https://www.youtube.com/c/MikeShah

Non-Academic Courses
courses.mshah.io
Conference Talks

http://tinyurl.com/mike-talks

8

http://www.mshah.io
https://www.youtube.com/c/MikeShah
http://courses.mshah.io
http://tinyurl.com/mike-talks

Code for the talk

e Located here:
https://qithub.com/MikeShah/Talks/tree/main/2024/dconf online

o There are some sample projects for getting started with OpenGL

Q MikeShah / Talks

Code Issues Pull requests

2024 | dconf_online

4 MikeShah

https://github.com/MikeShah/Talks/tree/main/2024/dconf_online

The Case for D

(By Andrei Alexandrescu)

Andrei Alexandrescu

Romanian-American software developer

(&) Moreimages

@ erdani.org

Andrei Alexandrescu is a Romanian-American C++ and D
language programmer and author. He is particularly known
for his pioneering work on policy-based design implemented
via template metaprogramming. These ideas are articulated
in his book Modern C++ Design and were first implemented
in his programming library, Loki. Wikipedia

10

The Case for DLang (1/3)

e Nearly 15 years ago Andrei
Alexandrescu wrote ‘The Case
for D’

o 15 years since, the D language has
continued to improve on its strong
foundations

e Andrei summarizes DLang as:
o “D could be best described as a
high-level systems
programming language”

The Case for D

By Andrei Alexandrescu, June 15, 2009
D could be best described as a high-level systems programming language

Andrei Alexandrescu is the author of Modern C++ Design and The D Programming_Language. He
can be contacted at erdani.org/.

Let's see why the D programming language is worth a serious look.

Of course, I'm not deluding myself that it's an easy task to convince you. We programmers are a
strange bunch in the way we form and keep language preferences. The knee-jerk reaction of a
programmer when eyeing a The XYZ Programming Language book on a bookstore shelf is
something like, "All right. I'll give myself 30 seconds to find something I don't like about XYZ."
Acquiring expertise in a programming language is a long and arduous process, and satisfaction is
delayed and uncertain. Trying to find quick reasons to avoid such an endeavor is a survival
instinct: the stakes are high and the investment is risky, so having the ability to make a rapid
negative decision early in the process can be a huge relief.

That being said, learning and using a programming language can be fun. By and large, coding in
a language is fun if the language does a satisfactory job at fulfilling the principles that the coder
using it holds in high esteem. Any misalignment causes the programmer to regard the language
as, for example, sloppy and insecure or self-righteous and tedious. A language can't possibly
fulfill everyone's needs and taste at the same time as many of them are contradictory, so it must
carefully commit to a few fundamental coordinates that put it on the landscape of programming
languages.

https://web.archive.org/web/20121020122307/https://www.drdobbs.com/parallel/the-c
ase-for-d/217801225

11

https://web.archive.org/web/20121020122307/https://www.drdobbs.com/parallel/the-case-for-d/217801225
https://web.archive.org/web/20121020122307/https://www.drdobbs.com/parallel/the-case-for-d/217801225

Nearly
Alexan
for D’ (

journal
o 15
COI

fod

At a glance D has many features: https://dlang.org/spec/spec.html

Language Reference
Table of Contents

Introduction
Lexical
Interpolation Expression This is the specification for the D Programming Language.
Sequence :

4 This is also available as a Mobi ebook.
Grammar
Modules « Introduction
Declarations e Lexical
Types * Interpolation Expression Sequence
Properties e Grammar
Attributes e Modules
Pragmas e Declarations
Expressions e Types
Statements e Properties
Arrays o Attributes

Andrei summarize
O “D Cou/d be beS esc,’,bed aS a That being said, learning and using a programming language can be fun. By and large, coding in
high-level systems

programming language”

_etayed and uncertain. Trying to find quick reasons to avoid such an endeavor is a survival
instinct: the stakes are high and the investment is risky, so having the ability to make a rapid
negative decision early in the process can be a huge relief.

a language is fun if the language does a satisfactory job at fulfilling the principles that the coder
using it holds in high esteem. Any misalignment causes the programmer to regard the language
as, for example, sloppy and insecure or self-righteous and tedious. A language can't possibly
fulfill everyone's needs and taste at the same time as many of them are contradictory, so it must
carefully commit to a few fundamental coordinates that put it on the landscape of programming
languages.

https://web.archive.org/web/20121020122307/https://www.drdobbs.com/parallel/the-c
ase-for-d/217801225

[1] and more here: https://dlang.org/comparison.html

12

https://web.archive.org/web/20121020122307/https://www.drdobbs.com/parallel/the-case-for-d/217801225
https://web.archive.org/web/20121020122307/https://www.drdobbs.com/parallel/the-case-for-d/217801225
https://dlang.org/spec/spec.html
https://dlang.org/comparison.html

At a glance -- Dlang is :
e A compiled language (3 freely available compilers)
o Extremely fast compilation with - DMD Compiler
o Other two compilers offer more targets (LDC and GDC)
e statically typed language
e Plays well with C, C++, Obj-C
o Embedded compiler - ImporiC
o e.g. of interoperation with C++ (Interfacing with C++)
e Many modern language features:
o Ranges (and foreach), Compile-Time Function Execution (CTFE),
Array slicing, lambda’s, mixins, contracts, unit testing, template
constraints, multiple memory allocation strategies, and more[1].

https://web.archive.org/web/20121020122307/https://www.drdobbs.com/parallel/the-c
ase-for-d/217801225

[1] and more here: https://dlang.org/comparison.html

13

https://web.archive.org/web/20121020122307/https://www.drdobbs.com/parallel/the-case-for-d/217801225
https://web.archive.org/web/20121020122307/https://www.drdobbs.com/parallel/the-case-for-d/217801225
https://dlang.org/spec/importc.html
https://dlang.org/spec/cpp_interface.html
https://dlang.org/comparison.html
https://dlang.org/comparison.html

The Case for D

as a Graphics Programmer
(By Me -- Mike Shah)

14

What is needed for graphics programming?

Generally speaking:

1. A systems programming language for graphics
programming
a. Many graphics APIs (OpenGL, Vulkan, etc.) are C-based APlIs
b. D talks with C very easily (See the interfacing guide), and it is often merely a matter of using a
binding to expose the C library functions to a programmer.
i. D also provides a way to transition C code (https://dlang.org/spec/importc.html) to D
code (C++ and Obj-C are also works in progress)

ii. See some of the example guides here: https://dlang.org/articles/ctod.html

2. We need a math library, or otherwise the ability to make a good math library
a. D itself provides operating overloading, which you can use.

15

https://dlang.org/spec/interfaceToC.html
https://dlang.org/spec/importc.html
https://dlang.org/articles/ctod.html

The Case for D for graphics programming

1. Most of the right defaults

a. e.g.variables are initialized (or use =void when speed matters), const is transitive, casts must
be explicit
2. Faster prototyping as a result of module system and excellent DMD compiler
a. (Can then leverage D frontends with LLVM and GCC backend for optimizations and target
platforms)
3. Can generate fast code
a. SIMD vector extensions available https://dlang.org/spec/simd.html
b. Multitasking support available [introduction here]:
i. Threads, fibers, etc.

4. It's fun to write code in DLang (my personal bias)

16

https://dlang.org/spec/simd.html
https://www.youtube.com/watch?v=NWIU5wn1F1I

The Case for D for graphics programming

1. Most of the right defaults

a. e.g.variables are initialized (or use
be explicit

2. Faster prototyping as a result of

a. (Can then leverage D frontends wit I Wl” ShOW yOU')

platforms)

3. Can generate fast code

a. SIMD vector extensions available h
b. Multitasking support available [intrg

i. Threads, fibers, etc. %

4. It’s fun to write code in DLang (my personal bias)

17

https://dlang.org/spec/simd.html
https://www.youtube.com/watch?v=NWIU5wn1F1I

Demo 1
First Triangle

18

Graphics Programming Crash Course

e In order to get a triangle drawing using our a GPU

we need a few things:
o 1.Awindow
o 2. To setup OpenGL (or your preferred graphics API)
o 3. Upload data from the CPU to GPU (i.e. the graphics
pipeline

19

Graphics Programming Crash Course - Window Setup

e The easiest way to setup a window is to use a cross-platform windowing

library like glfw or SDL
o Mike Parker’s bindbc-glfw or bindbc-sdl are great packages to get started
o https://code.dlang.org/packages/bindbc-glfw
o These packages are ‘bindings’ that otherwise expose the C functions calls from windowing
libraries to D code

bindbc-glfw

Static & dynamic bindings to GLFW3, compatible with BetterC, @nogc, and nothrow.

To use this package, run the following command in your project's root directory:

dub add bindbc-glfw £ 20

https://code.dlang.org/packages/bindbc-glfw

Graphics Programming Crash Course - Window Setup

e In the code samples in the talk

repository, I'll show how to ‘bind’ to ()
C functions manually struct GLFWmonitor;
o In general, you should use the bindbc SLaICE. GLEWIdaR:
or other bindings however, as that way enum{ GLFW_CONTEXT_VERSION MAJOR =
you'll get a complete set of functions. S CPRGL LT = e
e Butas you can see, talking to C LAV OPENGLFORVARD. COMPAT =

code is as simple as either
including the binding, or providing a

. . lias GLFWglproc = void
function or type declaration, and
then simply linking in the library t gLfwInit();
f GLFWw1ndow* glfwCreateWindow (i 11 st char*, GLFWmonitor*, GLFWwindow*);
© €.g. _L_lgl w3 _ oid glfwDestroyWindow (GLFWw1ndow *w1nd0w)
m -L -- passes a flag to the linker glfwTerminate(); _ _
. . . int glfwWindowShouldClose (GLFWwindow *window);
m -Iglfw3 -- brings in the library void glfwPollEvents ();
™ Additiona”y you may Specify glfwWindowShouldClose (GLFWwindow * window);
’ . glfwSwapBuffers (GLFWwindow *window);
the path to where to find the glfwMakeContextCurrent (GLFWwindow *window);
|ibrary ﬁ|e void glfwWindowHint (int hint, int value);
L €.g. GLFWglproc glfwGetProcAddress (const char *procname);
-L-L/usr/local/lib }

Graphics Programming Crash Course - APl Setup

For graphics APls, then you need to typically ‘load’ the functions or
extensions.

(@)

For OpenGL, you can use a tool like ‘glad’ to generate the C-function declarations for each

function that your hardware supports.

https://qlad.david.de/

Glad

Multi-Language GL/GLES/EGL/GLX/WGL Loader-Generator based on the official specs.

Language

D

API
gl

Specification

v OpenGL

Profile

Version 4.1 v Core

22

https://glad.dav1d.de/

Now as we're seeing our first D code --
let me mention the ‘D language’
advantage.

e D has a module system -- no need
to mess with .h or .hpp files (in
fact, there’s no preprocessor)

e Compiling with individual
modules allows the DMD
compiler to work super fast!

glad.gl.all;
glad.gl. loader;

(!glad.gl.1oadér.g1adL0adGL()){
writeln(

!

1

12 Globals g;

lJ struct Globals{

15

Shader basicShader;
Object3D obj;
GLFWwindow* window;
int screenWidth =
int screenHeight = 4

ith global state

LF(1glfwInit ()4
writeln(25
}

glfwWindowHint (GLFW_CONTEXT_VERSION_MAJOR,4);
glfwWindowHint (GLFW_CONTEXT_VERSION_MINOR,1);

glfwWindowHint (GLFW_OPENGL PROFILE,GLFW OPENGL CORE PROFILE);
glfwWindowHint (GLFW_OPENGL_FORWARD_COMPAT,GL_TRUE) ;

g.window = glfwCreateWindow(g.screenWidth,g.screenHeight,
glfwMakeContextCurrent(g.window) ;

Ip exten

7(1glad.gl.loader.gladLoad6L ()){

Quality of life improvements

Modules generally allow you to avoid
worrying about the order you declare

functions.

There’s also ‘module level constructors’ that
are called before main.
o This can be clearly utilized if you have
some initialization code -- like setting
up a graphics API prior to its use

‘'shared static this’ means that block
of code is called once ever (even
amongst many threads) -- and this
again is called before main() in
lexicographical order

24

Graphics Pipelines - High Level Abstraction ApIEEIE Sl

e \We now have OpenGL functions loaded (using glad), and
a window setup (using glfw with our C binding)

e \We are now ready to start doing some graphics Geometry
programming using the OpenGL API

Rasterization and
Pixel Processing

Graphics Pipelines - Application Stage Application Stage

e At the application stage, this is import std.stdio;

our main loop
o We also will ‘'send’ geometric data at }
this stage from CPU to the GPU
o The application stage otherwise is
where all the ‘cpu’ work is completed: }
m Filel/O void render(){
m cpu memory allocation
.. }
m Handling input

void input(){

Geometry

void update(){

Rasterization and

Pixel Processing
void main(){

(){
input();
update();
render();

Application Stage

Graphics Pipelines - Geometry Stage

e At the geometry stage, we .

are now on the GPU

o
o Data that has been sent to v.nicos. Geometry
the GPU from the CPU is '
L]

being assembled into

primitives
o Primitives may also be ‘ -
transformed (e.g. rotated, Rasterization and

El
' 7 Pixel Processing

Primitive assembly

scaled, or translated)

Vertex shader

Application Stage

Graphics Pipelines - Rasterization

e At this stage, we represent
our geometric shapes (e.g.
triangles) as discrete Geometry
pixels.

e \We also color in those

pixels based on their color -
and transparency C 7 BHEHE Re_astenzatlon e_md
\ assas Pixel Processing

Application Stage

Graphics Pipelines - Display

e At the final stage you display the ‘frame’

that you have created.

o This is stored in something known as a Geometry
‘framebuffer’ that at the least stores the colors
of your pixels.

Rasterization and
Pixel Processing

void Triangle(){

Displaying a Triangle

[

e Jo draw a triangle, we use | olst, olof,
OpenGL to upload data 1£(050, miertexoata. length)
frOm the CPU to the GPU glGenVertexArrays(l, &g.mVAO);

glBindVertexArray(g.mVAO);

o For those who have done
graphics programming -- this qlGenbutierstl, Sg,me0

glBindBuffer(GL_ARRAY BUFFER, g.mVBO);
. glBufferData(GL ARRAY BUFFER, mVertexData.length* GLfloat.sizeof, mVertexData.ptr, GL STATIC DRAW);
code is nearly the same as i -
any C or C++ tutorial you will

glEnableVertexAttribArray(0);

f|nd glVertexAttribPointer(®, 3, GL FLOAT, GL FALSE, GLfloat.sizeof*5,
] (|e a” Of the OpenGL glEnableVertexAttribArray(1);
glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, GLfloat.sizeof*6, (GLvoid*) (GLfloat.sizeof*3));
functions are the
glBindVertexArray(0);
same)

glDisableVertexAttribArray(0);
glDisableVertexAttribArray(1);

30

(msg,vertexData.length);

oid Triangle(){

const GLfloat[] mVertexData =

One small change from C or i
C++ is this line above.
o D’s Compile-Time : G SRk
Function Execution (o merteats ength);
(CTFE) and general glenvertexarrays(1, &g.nVAO);
introspection capabilities R

glGenBuffers(1l, &g.mVBO);

can be useful for g\BindBuffer(GL ARRAY BUFFER, g.mVBO);

glBufferData(GL ARRAY BUFFER, mVertexData.length* GLfloat.sizeof, mVertexData.ptr, GL STATIC DRAW);

catching bugs at
(:()rT1F)I|EB-tIrT]EB gt52?225X$£$§Eé§E;igé[r?y(,)éL_FLOAT, GL_FALSE, GLfloat.sizeof*
The pragma | stuck in here is
to confirm at compile-time |
have the right amount of data. gIELniVer ceiiray)
o Arrays are also ‘bounds SiDisablevertexAtt ribArray(L)|
checked’ for safety (can
be turned off if needed) »

glEnableVertexAttribArray()
glVertexAttribPointer(1, 3, GL_FLOAT, GL FALSE, GLfloat.sizeof*6, (GLvoid*) (GLfloat.sizeof*3))

https://wiki.dlang.org/Compile-time_vs._compile-time
https://wiki.dlang.org/Compile-time_vs._compile-time

(msg,vertexData.length

See this example below when
| did not populate color data

properly

DConf Online 2024 = & &

Example of a ‘mistake’ | made in preparation of the demo

‘static asserts’ can also be placed
to further write code more solid
code.

| Triangle(){
GLfloat[] mVertexData =

’
’
’
’
’
’

mVertexData

glGenVertexArrays(1, &g.mVAO);'

glBindVertexArray(g.mVAO);

glGenBuffers(1l, &g.mVBO);
glBindBuffer(GL_ARRAY_BUFFER, g.mVBO);
glBufferData(GL ARRAY BUFFER, mVertexData.length* GLfloat.sizeof, mVertexData.ptr, GL STATIC DRAW);

glEnableVertexAttribArray(0);
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, GLfloat.sizeof*6, (void*)0)

glEnableVertexAttr Array(1);
glVertexAttribPoin (1, 3, GL_FLOAT, GL_FALSE, GLfloat.sizeof*6, (GLvoid*) (GLfloat.sizeof*3))

glBindVertexArray(0);

glDisableVertexAttribArray(0);
glDisableVertexAttribArray(1);

32

https://dlang.org/spec/version.html#static-assert

vertexData.length* GL FLOAT.size,

® The enum ‘GL_FLOAT’ above is actually ERisEatk
an ‘integer’ type in the OpenGL API RS e R
o The ‘float’ type we actually want is por, o.of, 0.0,

the ‘alias’ to GLfloat shown in the
code

o We could use a static assert at
compile-time with

glBIiove.

GLfloat.sizeof to ensure it - :

m t r . r .r m nt glGenBuffers(1l, &g.mVBO);
1BindBuffer(GL ARRAY BUFFER, g.mVBO);

) el Ol ge eql'“ S ngﬂfeLrlDaiz:EGL:ARRAY:BUFFER, r?lvgrteiData.length mVertexData.ptr, GL_STATIC DRAW);
e Luckily however, D’s basic types have
predictable SizeS [table] glEﬁableVertexAttribArray(A
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, GLfloat.sizeof*6,
type size

bool, byte, ubyte, char 8-bit

glEnableVe rtexAtt ribArray(1);

T (er 16-bit glVertexAttribPointer(1, 3, GL_FLOAT, GL FALSE, GLfloat.sizeof*6, (GLvoid*) (GLfloat.sizeof*3));
int, uint, dchar 32-bit g
long, ulong 64-bit glBindVertexArray(0);
Floating point types: glDisableVertexAttribArray(0);
glDisableVertexAttribArray(1);
type size

float 32-bit
double 64-bit

real >= 64-bit (generally 64-bit, but 80-bit on Intel x86 32-bit)

https://dlang.org/library/std/meta/alias.html
https://dlang.org/spec/version.html#static-assert
https://tour.dlang.org/tour/en/basics/basic-types

e Other quality of life features include things like explicit casting using the
‘cast’ keyword
o (C on the left, and D on the right)

(GL_FLOAT)*6, :
/0id*) i GL FLOAT,
GL FALSE, i
sizeof(GL_FLOAT)*6,

(void*)
YLDLIUDUT 11 \UL_ANRNAT_ Do

glBufferData(GL ARRAY BUFFER, mveres \ertexData.ptr, GL STATIC DRAW);

glEnableVertexAttribArray(0);
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, GLfloat.sizeof*6,

glEnableVertexAttribArray(1);

glVertexAttribPointer(1, 3, GL_FLOAT, GL FALSE, GLfloat.sizeof* GLvoid*) (GLfloat.sizeof*

glBindVertexArray(0);

glDisableVertexAttribArray(0);
glDisableVertexAttribArray(1);

34

Application Stage

Graphics Pipelines - Shaders

e Now in order to actually do something, we have to
create a graphics pipeline

o This is done by processing our geometry in a GPU program called Geometry

a ‘vertex’ or shader.

o We then also write one other GPU program called a ‘fragment’ or
‘pixel’ shader

Rasterization and
Pixel Processing

oid BuildBasicShader(){

GLuint vertexShader;

Shader Code (1/2)

vertexShader = glCreateShader(GL_VERTEX SHADER);
fragmentShader= glCreateShader(GL FRAGMENT SHADER);

. . string texS =i it (
e TJo the rightis all the shader code ctring fragnentSaurce = import{
needed const char* vertSource = vertexSource.ptr;
. . nghaderSource(vertexshader, , &ertSource,
o (Error checking separated out into glCompileShader (vertexShader) ;

CheckShaderError(vertexShader) ;

one other function)

r* fragSource = fragmentSource.ptr;
nghaderSource(fragmentShader, , &fragSource,
glCompileShader (fragmentShader) ;
CheckShaderError(fragmentShader) ;

g.programObject = glCreateProgram();

glAttachShader(g.programObject,vertexShader);
glAttachShader(g.programObject, fragmentShader) ;
glLinkProgram(g.programObject);

glvalidateProgram(g.programObject);

glDetachShader(g.programObject, vertexShader) ;
nggIachShader(g.programObject,fragmentShader)

glDeleteShader (vertexShader) ;
glDeleteShader (fragmentShader) ;

void BuildBasicShader(){

GLuint \)e rtexShader;
GLuint fragmentShader;

e One interesting thing for this e - Dl LV e,
demo is | did not bother to write I Sl denietes = Il ;
any code to load the shaders

const char* vertSource = vertexSource.ptr;

from a f||e On d|Sk glShaderSource(vertexShader, 1, &vertSource,
o Instead, | just imported the o
code (similar to C23’s ol S e iy

glCompileShader(vertexShader);
CheckShaderError(vertexShader) ;

glCompileShader(fragmentShader);

upcoming #embed) feature. e
e The advantage here is: I/ Create hader pipetine
o 1. primarily simplicity for i aur o s rogeans tae
small programs [w glAttachshader (g. progranobject vertexshader) ;

glAttachShader(g.programObject, fragmentShader) ;

WOrkIn Wlth C StrlnS] glLinkProgram(g.programObject);
2_ If I do Want to embed glValidateProgram(g.programObject);
code as data, it’s relatively i felete ¢
. . glDetachShader(g.programObject, vertexShader) ;
Stralghtforward If I do not ngach?had?r(g.programObject,fragm?ntShader);‘

glDeleteShader (vertexShader) ;

Want tO gO tO d|Sk glDeleteShader (fragmentShader) ;

https://dlang.org/blog/2021/05/24/interfacing-d-with-c-strings-part-one/
https://dlang.org/blog/2021/05/24/interfacing-d-with-c-strings-part-one/

Demo 2
Objects

DConf Online 2024

38

Parsing Structured Data

void OBJModel(string filepath)j

f1 tices;
e If we want to draw Hoact horsatss
. uint[] faces;
Somethlng more auto f = File(filepath);
interesting than triangles, (Line ; f.byLine){
. (line.startsWith(A
\A/EE \A/”l |()Ei(j tr]Eat (jEitEi fr()rT1 line.splitter() .array.remove(0).each!((e) { vertices~= parse!float(e);})
. writeln(line.splitter().array);
a file. (line.startswith()){
. . . line.splitter() .array.remove(0).each!((e) { normals ~= parse!float(e);});
) TO the nght - IS the ent”'e writeln(line.splitter(" ").array);
o (line.startsWith(N A{
parser for the ObJ flle auto face = line.splitter() .array.remove(0);

(indice; face){
auto component = indice.splitter() .array;
(component[0]!=""){
int idx = (parse!int(component[0]) - 1) * 3;
mVertexData~= [vertices[idx], vertices[idx+1], vertices[idx+2]];

}
(component[2]!=""){
int idx= (parse!int(component[2]) -) * .33
mVertexData ~= [normals[idx+0], normals[idx+1], normals[idx+2]];

void OBJModel(string filepath)j
float[] vertices;
float[] normals;
uint[] faces;

auto f = File(filepath);

e Observe where each(line ; f.byLine){

LJf1i\/EEFSSEi| fl]f1(3ti()f1 (323|| .:7 : o e ; .remove (?.each!((e) vertices~= parse!float(e);
Syntax (UFCS) rea”y _ (line:startsWith()){ 7

55t1|r1€355 Eill()\A/|r1£J LJES t() bigiéig}%iﬁgrépliiizﬁzay.;éggxgéj?.each.((e) { normals ~= parse!float(e);})
right concise and (Line. startswith("f *)){

auto face = line.splitter() .array.remove(0);
readable code. (indice; face){
auto component = indice.splitter() .array;
(component[0]!=""){
int idx = (parse!int(component[0]) - 1) * 3;
mVertexData~= [vertices[idx], vertices[idx+1], vertices[idx+2]];

}
(component[2]!=""){
int idx= (parse!int(component[2]) - 1) * 3;
mVertexData ~= [normals[idx+0], normals[idx+1], normals[idx+2]];

DConf online 2024

e On your own time you can zoom in and contrast the C++ (left)
versus the D (right) code.
When simple, both read about the same -- but as
complexity goes up, the D code remains about the same
complexity.

void Model::load0BJ(){ void OBJMode (> =
// 1.) Scan the data float[] vertices;
std::string line; fLoat[] normals;
std::ifstream myFile(fname.c_str()); uint[] faces;
(myFile.is open()){))
(getline(myFile,line)){ auto f = File(filepath)
(Line[0]=="1"){ u)
std::string temp = myutil::replaceString(line, BN (line ; f.byLine){
temp = myutil::replaceString(temp, 7); .
temp = myutil::replaceString(temp,"a"," "); (line.startsWith(A4 .
std::vector<int> lst = myutil::vectorStringToInt(myutil::split(temp,” ")); line.splitter(" ").array.remove(0).each!((e) { vertices~= parse!float(e);});
// Create a face writeln(line.splitter().array);
// Subtract 1 because obj's are 1's based
trianglelList.push_back((unsigned int)lst[0]-1);
triangleList.push_back((unsigned int)lst[2]-1);
trianglelList.push_back((unsigned int)lst[4]-1);

); (line.startswWith() A{
= line.splitter() .array.remove(0).each!((e) { normals ~= parse!float(e);});
writeln(line.splitter().array);

1i = (line.startsWith(A

({i;Z?F l:)%{ auto face = line.splitter(" ").array.remove(0)
std::vector<float> temp = myutil::vectorStringToFloat(myutil::split(line,)5 (indice; facf){ . ;
normalList.push_back(Normal(temp[O],temp[1],temp[2])); au}goﬁgzﬁgﬂiTt]T_ln?%ce.splltter().array;

" _ . . e e AR . int idx = (parse!int(component[0]) - 1) * 3
32ﬁ£é;ﬁgzgT;zlgaE;CE?T$loaT¥gz;;iiyﬁstorStrlngToFloat(myutll..spllt(llne, i mVertexData~= [vertices[idx], vertices[idx+]], vertices[idx+2]];
vertexList.push_back((float)temp[1]); ¥
vertexList.push_back((float)temp[2]);

// Also push in some colors

vertexList.push_back()is

vertexList.push_back()

vertexList.push back(0.9f);

(component[2]!=""){
int idx= (parse!int(component[2]) -) &
mVertexData ~= [normals[idx+0], normals[ldx+ 1, normals[idx+2]];

It remains a future experiment -- but | think with D’s built-in
concurrency (std.concurrency) | could probably speed this up

quite a bit.

©)

It's an open challenge to myself (and anyone else) to see
if you can build the fastest .obj parser.

‘ Mike Shah, Ph.D. @MichaelShah - Dec 3, 2023

This little chunk of #dlang trivially handles faces in both instances of having
or missing texture data (i.e. v/vt/vn or v//vn data). There's probably edge
cases, but little things like this in the standard library are quite nice.

Hgraphics

(line.startsWith(DDA
face = line.splitter().array.remove(0);
writeln(face);
(indice; face){

component = indice.splitter().array;

Q1 n Q ihi 121 &

‘ Mike Shah, Ph.D. @MichaelShah - Dec 3, 2023

It's nothing too complicated, but just satisfying sometimes to see less
code, more features, and more maintainable code. Makes programming
fun! & (asit should be!)

(OF 0 Q2 ih1 138 W&

Mike Shah, Ph.D. @MichaelShah - Dec 3, 2023

It's not the current goal, but probably also worth mentioning this file can be
'chunked' and parallelized for handling multiple .obj files. Might be worth
experiments later on.

https://twitter.com/MichaelShah/status/1731522845191057919

)L

T = File(filepath);

(line ;

f.byLine){

(line.startsWith(DA

line.splitter(" ").array.remove(0).each!((e) { vertices~= parse!float(e);});

writeln(line.splitter().array);

(line.startsWith(N A{

line.splitter() .array.remove(0).each!((e) { normals ~= parse!float(e);});

writeln(line.splitter().array);

(line.startswWith(A
auto face = line.splitter().array.remove(0);

(indice; face){

auto component = indice.splitter().array;

}

(component[0]!=""){
int idx = (parse!int(component[0]) -) *3;
mVertexData~= [vertices[idx], vertices[idx+1], vertices[idx+2]];

(component[2]!=""){
int idx= (parse!int(component[2]) -) ®¥3:
mVertexData ~= [normals[idx+0], normals[idx+1], normals[idx+2]];

42

https://dlang.org/phobos/std_concurrency.html
https://twitter.com/MichaelShah/status/1731522845191057919

DConf online 2024 o x

Anyways... with a little bit more code, | was able to extend my
parser to handle .obj files that contain multiple models and
materials.
o A mix of functional and object-oriented paradigms made
this quite nice!

(string path){
filepath = path;
f = File(filepath);

objNum = -1;
(line ; f.byLine){

(line.startsWith("#")){

(line.startswith(N
objects.length = objects.length+1;
objects[++objNum].name = line.splitter() .array.remove(0)[0].idup;

(line.startsWith(I
materials.length +:
st nami line.splitter(" ").array.remove(0)[6].idup;
materials[$-1] = material(path,name);

(line.startsWith(DA
line.splitter(" ").array.remove(0).each!((e) { objects[objNum].vertices~= parse!float(e);});

(line.startsWith(N
line.splitter().array.remove(0).each!((e) { objects[objNum].normals ~= parse!float(e);});

(line.startsWith(N
line.splitter().array.remove(0).each!((e) { objects[objNum].textureCoordinates ~= parse!float(e);})|

rtswith('7 ")){
line.splitter().array.remove(0);

(indice; face){
component = indice.splitter("/").array;

(component[0]!=
objects[$-1].flattened data ~= objects[objNum].vertices[parse!int(component[0])];

(component[1]!=
objects[$-1].flattened data ~= objects[objNum].textureCoordinates[parse!int(component[1])];

(component[2]!=""){
objects[$-1].flattened data ~= objects[objNum].normals[parse!int(component[2])];

43

https://twitter.com/MichaelShah/status/1731522845191057919

https://twitter.com/MichaelShah/status/1731522845191057919

The other thing to note -- is that
complexity often arises with the many
variations of 3D data.

o A 3D model can contain vertices or
a number of other attributes such
as texture coordinates, vertex
normals, or other primitives.

-

< < < <

vt
VE
vt
vt
vn
vn
vn
vn
vp
vp
vp
vp

O O O O O o o W

.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.210000
.000000
.000000
.500000

[S o B <o T 75 I x> F o b o [o}

.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.590000
.000000
.000000
.500000

o OO0 00 00 O

.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000

https://paulbourke.net/dataformats/obij/

44

https://paulbourke.net/dataformats/obj/

auto data = FlexibleVertexFormat! (Vertex, TextureCoordinate,Normal3D)();

auto data2 = FlexibleVertexFormat! (float, float, float)();

e With D’s metaprogramming capabilities,

you can generate the Varlatlons you struct FlexibleVertexFormat(T...){
// Generate the member functions based
need for your geometry data_ // on the template arguments

// "i" is a counter and appended to provide unique names
// to each generated variable
import std.conv;
static (i,arg; T){
(arg, ~arg.stringof~to!string(i)~";");
}

string Generate(){
pragma(msg,);
static f “h (i, m; FlexibleVertexFormat.tupleof) {

// enum name = FlexibleVertexFormat.tupleof;
//alias typeof(m) type;
pragma(msg, typeof(m));
pragma(msg,m.stringof);
pragma(msg,m.sizeof);
//writef("(%s) %s\n", type.stringof, name);

}

pragma(msg,

https://paulbourke.net/dataformats/obj/

auto data = FlexibleVertexFormat! (Vertex, TextureCoordinate,Normal3D)();
auto data2 = FlexibleVertexFormat! (float, float, float)();

// Vertex Arrays Object (VAO) Setup

// We lect) to the Vertex Array Object (VAO) that we want to work withn.

e With D’s metaprogramming capabilities, [l E——-—_—

glGenBuffers(1, &mVBO);

yo u Ca n g e n e rate th e Va ri ati O n S yo u g%gﬁﬁz%;i;Egtjﬁmijgﬂggsﬁ mzi?‘w)téxData.length* GLfloat.sizeof, mVertexData.ptr, GL_STATIC DRAW);

// Vertex attributes

need for your geometry data. N
o This could also include setting up I
the various layouts needed for L ol
passing data to OpenGL éiﬁ::ﬁ}:&:ﬁ:zﬁ:g:15:;:3;{;;m
o Observe the the right two different

// Vertex Arrays Object (VAO) Set
g rt & H
ayou S p // We bind (i.e. select) to the Vertex Array Object (VAO) that we want to work withn.

glBindVertexArray(mVAO) ;

m \Why write this error prone Lo | et o

glBindBuffer(GL_ARRAY_BUFFER, mVBO);

X Attribute Arrray,

glBufferData(GL_ARRAY BUFFER, mVertexData.length* GLfloat.sizeof, mVertexData.ptr, GL STATIC DRAW);

boilerplate, when we could T e——

// Atribute #0

oth e rWise g e n e rate it? 143 3{52?-2233%9332’?[ray()éLiFLUAT, GL FALSE, GLfloat.sizeof*s, (void*)0);

// Attribute #1
glEnableVertexAttribArray(1);
glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, GLfloat.sizeof*5, st(GLvoid*) (GLfloat.sizeof*3));

und Vertex Array Object

opened in our Vertex Attribute Arrray,
/1 e do not want to em open.
glDisableVertexAttribArray(0);
glDisableVertexAttribArray(1);

https://paulbourke.net/dataformats/obj/

Demo 3
Render Targets

onf Online 2024

47

Multiple Render Targets (1/2)

e \What the acute watcher will
observe is that the last two
demos are almost exactly

the same

o The difference is that this
final demo renders to an
offscreen texture, before
rendering the object

Renderpass
#1

Renderpass
#2

Renderpass

Final image is composed
of the ‘data’ from other
intermediate renderings.

Often we defer expensive
calculations to the end to
only compute them once
(e.g. deferred rendering)

There is actually nothing D
specific here -- this is just a
function of the API

And that’s exactly my point
-- if you've seen it done in
other languages with
graphics APIs, you can do
the same work with D, and
take advantage of D’s
productivity.

Renderpass
#1

Renderpass
#2

Renderpass

Final image is composed
of the ‘data’ from other
intermediate renderings.

Often we defer expensive
calculations to the end to
only compute them once
(e.g. deferred rendering)

D Graphics Projects

(More projects found at my FOSDEM 2024 talk here:
https://www.youtube.com/watch?v=ylL.aUsmLr9so)

First Look at:

Dlang

“Starting program".write

enum a = [3, 1 2 4 0]

tatic immutable b = sort(a‘

FOSDEM Rh

pragma(msg, "“F

[Programming Languages] Episode 19 - First Impression - dlang
(FOSDEM 2024 Talk)

673 views * 3 weeks ago

g Mike Shah

=Lesson Description: In this lesson | present one of my favorite languages - in fact I'm breaking the rules a bit -

- dlang! As many ...

50

https://www.youtube.com/watch?v=yLaUsmLr9so

Utilized the D Programming Language

AAA Game Projects in D

Quantum Break -- Game

Ask a question at goo.gl/slides/92v98z

It's also worth noting that D has been

used in AAA Commercial Games
o Ethan Watson has a wonderful
presentation describing that experience
o Link to talk:
https://www.gdcvault.com/play/1023843/D-
Using-an-Emerging-Language

Talk Abstract: con you use D to make games? Yes.

Has it been used in a major release? It has now. But what
benefits does it have over C++? Is it ready for mass use?
Does treating code as data with a traditional C++ engine
work? This talk will cover Remedy's usage of the D
programming language in Quantum Break and also
provide some details on where we want to take usage of
it in the future.

Could you show some more examples of what
is simplier to d than c++?

Viktor Sehr

1x

https://m.media-amazon.com/images/M/MV5BOThjOWRhN2QtYmIxMy0OMGESLTk5ZWMtY2ZkMzIOMGY 1ZTM1XkEyXkFacGdeQX

VyMTYxMzY10Da@. V1 _.jpa

51

https://www.gdcvault.com/play/1023843/D-Using-an-Emerging-Language
https://www.gdcvault.com/play/1023843/D-Using-an-Emerging-Language
https://m.media-amazon.com/images/M/MV5BOThjOWRhN2QtYmIxMy00MGE3LTk5ZWMtY2ZkMzI0MGY1ZTM1XkEyXkFqcGdeQXVyMTYxMzY1ODg@._V1_.jpg
https://m.media-amazon.com/images/M/MV5BOThjOWRhN2QtYmIxMy00MGE3LTk5ZWMtY2ZkMzI0MGY1ZTM1XkEyXkFqcGdeQXVyMTYxMzY1ODg@._V1_.jpg

Built in the D Programming Language Dagon -- Game Engine

e Website with games and tutorials: https://gecko0307.github.io/dagon/

e Github or Dub Repository: https://github.com/gecko0307/dagon | https://code.dlang.org/packages/dagon
52

https://gecko0307.github.io/dagon/
https://github.com/gecko0307/dagon
https://code.dlang.org/packages/dagon

Built in the D Programming Language Dash -- Game Engine

e \Website with games: htips://circularstudios.com/
e Github or Dub Repository: https://github.com/Circular-Studios/Dash
e Forum Post: https://forum.dlang.org/thread/gnagymkehjvopwxwvwig@forum.dlang.org

https://circularstudios.com/
https://github.com/Circular-Studios/Dash
https://forum.dlang.org/thread/qnaqymkehjvopwxwvwig@forum.dlang.org

=[0Il l=R D R felel=Tnalnallale M R=Tale[VETe[cl Hipreme Engine -- Game Engine

e Github or Dub Repository: https://github.com/MrcSnm/HipremeEngine
e DConf 2023 Talk: DConf '23 -- Hipreme Engine: Bringing D Everywhere -- Marcelo Mancini

https://github.com/MrcSnm/HipremeEngine
https://www.youtube.com/watch?v=jgygD7B_CPk

Built in the D Programming Language §=381iE) g ety Caa RS e)

Time: 22.50 us

Time: 22.50 us

Figure 5.7: Static temperature and mass fraction of nitrogen atoms in the flow field
from the chemical nonequilibrium simulation.

e \Website: https://gdtk.ugcloud.net/ and https://adtk.ugcloud.net/pdfs/eilmer-user-quide.pdf
e Github or Dub Repository: https://github.com/gdtk-uag/adtk

https://gdtk.uqcloud.net/
https://gdtk.uqcloud.net/pdfs/eilmer-user-guide.pdf
https://github.com/gdtk-uq/gdtk

Learning More About the D Language

Further Understanding the Case for Dlang

In 2020 the ACM'’s History
of Programming Languages
(HOPL) had an article
published by Walter,
Andrei, and Mike Parker to
understand the origins of
the language
o | would encourage D
programmers and newcomers
to read the article which
motivates the language and

the ‘why’ behind its design
decision.

Origins of the D Programming Language

WALTER BRIGHT, The D Language Foundation, USA
ANDREI ALEXANDRESCU, The D Language Foundation, USA
MICHAEL PARKER, The D Language Foundation, USA

Shepherd: Roberto Ierusalimschy, PUC-Rio, Brazil

As its name suggests, the initial motivation for the D programming language was to improve on C and C++

while keeping their spirit. The D language was to preserve the efficiency, low-level access, and Algol-style

syntax of those languages. The areas D set out to improve focused initially on rapid development, convenience,

and simplifying the syntax without hampering expressiveness.

https://dl.acm.ora/doi//10.1145/3386323

57

https://dl.acm.org/doi/abs/10.1145/3386323

Further resources and training materials

e Tons of talks (Games, graphics, servers, etc.)
o https://wiki.dlang.org/Videos#Tutorials

e My ‘Graphics Related’ talks on Ray Tracers
o DConf'22: Ray Tracing in (Less Than) One Weekend with DLang -- Mike Shah
m https://www.youtube.com/watch?v=nCIB8df792g
o DConf Online '22 - Engineering a Ray Tracer on the Next Weekend with DLang
m hitps://www.youtube.com/watch?v=MFhTRiobWfU

58

https://wiki.dlang.org/Videos#Tutorials
https://www.youtube.com/watch?v=nCIB8df7q2g
https://www.youtube.com/watch?v=MFhTRiobWfU

Vulkan

e Most folks will probably point you to Vulkan as a modern graphics API to learn

o They are probably right -- as Vulkan allows you to create pipelines that execute much better
concurrently.
o D has several bindings to Vulkan that you can start using today

u.B Packages Documentation v About v Download Login Search for a package Q

Search results for: vulkan

Package Latest version Date Score Description

erupted 2.1.98+v1.3.248 2023-Apr-20 2.4 Auto-generated D bindings for Vulkan

derelict- 0.0.20 2018-Jul-07 2.0 A dynamic binding to the vulkan api.

vulkan

d-vulkan 0.3.1 2016-May-19 1.3 Auto-generated D bindings for Vulkan

glfw-d 1.1.1 2023-Jul-03 14 D translation of GLFW, a multi-platform library for OpenGL, OpenGL ES, Vulkan,
window and input

teraflop 0.8.0 2021-Feb-05 0.0 @ An ECS game engine on a Vulkan foundation

vulkanish 1.0.0-alpha.l 2020-Apr-09 0

~J

Helper functions/templates for Erupted Vulkan.

eriinted v?2 117 2018-Mar-26 0

3]

Auta-aenerated D hindinas for Vuilkan

The D language tour

e Nice set of online tutorials
that you can work through
in 1 day

o Found directly on the D

language website under
‘Learn’

Welcome v

D‘ DLang Tour

Imports and modules

One of D's core design decision was to be consistent and avoid corner
in the language. This is called turtles all the way down. One good exa
for this consistency are import s.

Imports

For a simple hello world program in D, import s are needed. The impo
functions and types from the given module available.

The turtles start falling down

An import statement does not need to appear at the top of a source filg
functions or any other scope. In the following chapters you will see thg

D. The language doesn't impose arbitrary restrictions on you.

Selective imports

The standard library, called Phobos, is located under the package std

D'sBasicsv D'sGems~v Multithreading v

Imports and modules

Basic types @
Memory

Mutability

Control flow

Functions

Structs

Arrays

Slices

Alias & Strings

Loops

Foreach

Ranges

Associative Arrays

Classes ally within
Tnterfices all concepts in
Templates

Delegates

Exceptions

Further Reading erenced through

Vibed v D by Examples v DUB package:

void main()

import std.stdio;
// or import std.stdio : writeln;
writeln("Hello, World!");

https://tour.dlanqg.org/

60

https://tour.dlang.org/

More Resources for Learning D

| would start with these two books

1. Programming in D by Ali Cehreli
a. Freely available http://ddili.org/

2. Learning D by Michael Parker

" Sl A
Esmbbniny 4PN

Any other books you find on D are also very Learning D

good -- folks in the D community write books
out of passion!

=
g
g‘s‘
=
E=

The online forums and discord are otherwise
very active

61

http://ddili.org/

YouTube

[Episode 0] | Series Teaser = Bk Videos)) EShee

ma t rix. p y episoce o] | Serles Teaser | [Dlang Series Teaser] Dlang versus Python speed comparison (Matrix Multiply)

e | am actively adding matrix.d |8 raerie P

DLang p 1:00

m O re | e SS O n S a b O ut th e D L an q r Tepsoce ol | Series Teaser| Dlang versus Python (Matrix Multiply) #shorts series intro

() matrix.py
1 D Language DLang 7 matrix.d
D programming

(tepisoce 11 |hab IS DLang? [Dlang Episode 1] The D Programming Language - dlang
language

3 Mike Shah « 2.2K 1 year ago

. DLang p 1:00
Programming
Public vV

DLang 716

0 h tt D S //WWW VO u t u b e] CO m 85 videos 19,883 views Last updated on Dec 22, 2023

(eoisoce 2) [DEARG Install 28 [Dlang Episode 2] D Language - setup on Linux (dmd, gdc, and Idc2 shown!)
) U H on Linux n‘—

/C/M | ke S h a h g TRE Mike Shah - 1.8K views * 1 year ago

«az» - -
[Eve n t u a I Iy I WI | I a d d A full playlist on learning the D Y ang Install [Dlang Episode 3] D Language - setup on Mac (Shown on Mac M1, DMD and LDC2)

- o [on Mac (M1 shown)
Programming language. A great starting - Mike Shah + 1.1K views * 1 year ago

= . H place for beginners to start, as we'll start
g ra p h I cs to th I S p | ayl I St from the very beginning. This playlist will
also move towards more advanced
features of the language as well - find it o [Dlang Episode 4] D Language - DMD command line and Visual D for Visual Studio (DMD and

or another on my \
channel. -

(Explained)
&

hah « 1.5K views * 1 year ago

[Dlang Episode 5] The Anatomy of a Hello World Application

Mike Shah + 1.4K views * 1 year ago

p 811

https://www.youtube.com/playlist?list=PLvv0ScY6vid9Fso-3cB4CGnSIW0QE4btJV

62

https://www.youtube.com/c/MikeShah
https://www.youtube.com/c/MikeShah
https://www.youtube.com/playlist?list=PLvv0ScY6vfd9Fso-3cB4CGnSlW0E4btJV

Thank you DConf Online =

Ohline 24

The Case for Graphics

with Mike Shah

Social: @MichaelShah

Web: mshah.io

Courses: courses.mshah.io
3 YouTube
www.voutube.com/c/MikeShah
http://tinyurl.com/mike-talks

18:00 - 18:30 UTC Sat, March 16, 2024

~30 minutes | Introductory Audience

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah
http://tinyurl.com/mike-talks

Thank you!

